If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+2b-32=0
a = 1; b = 2; c = -32;
Δ = b2-4ac
Δ = 22-4·1·(-32)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{33}}{2*1}=\frac{-2-2\sqrt{33}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{33}}{2*1}=\frac{-2+2\sqrt{33}}{2} $
| p/13=-4 | | 2d=450 | | 8(−m+7)=−24 | | 2865+161.25x=400x | | 7y-3(y=2) | | 48=b/2 | | 5-7p=5 | | 1/4(20x+24)=21 | | 2y-(y/2)=0 | | r=8r | | 22=1/2x+12 | | 25y+6=25 | | 4x.4x= | | 11x-22=28x-28 | | q+449=-485 | | x10=81 | | 7+3q=31 | | -6+2a=-18 | | w+-442=-802 | | 5d-5=6d | | j-655=-146 | | (13x+2)x2=(29x-2) | | 3.2(2-x)=-0.8(2x-4) | | 62x=15 | | 25-m=9 | | 8x-20=2x+33 | | p+110=852 | | 3-(n+2)=-14-7n | | –5=2(n+4)+–5 | | 18s=-162 | | 54×9=n | | 2x=-3.8 |